516 research outputs found

    Phase transitions in a gas of anyons

    Full text link
    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however now in the presence of a topological term added to the action corresponding to the total linking number between the loops. We compute the linking number using certain notions from knot theory. Adding the topological term converts the particles into anyons. Using the correspondence that the model is an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. We find the following new results. The system continues to exhibit a phase transition as a function of the anyon mass as it becomes small \cite{mnp}, although the phases do not change the manifestation of the symmetry. The Chern-Simons term has no effect on the Wilson loop, but it does affect the {\rm '}t Hooft loop. For a given configuration it adds the linking number of the 't Hooft loop with all of the dynamical vortex loops to the action. We find that both the Wilson loop and the 't Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, which is unexpected.Comment: 6 pages, 5 figure

    Markov quantum fields on a manifold

    Full text link
    We study scalar quantum field theory on a compact manifold. The free theory is defined in terms of functional integrals. For positive mass it is shown to have the Markov property in the sense of Nelson. This property is used to establish a reflection positivity result when the manifold has a reflection symmetry. In dimension d=2 we use the Markov property to establish a sewing operation for manifolds with boundary circles. Also in d=2 the Markov property is proved for interacting fields.Comment: 14 pages, 1 figure, Late

    A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

    Full text link
    Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with SROIQ(D) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach

    Measuring the Hausdorff Dimension of Quantum Mechanical Paths

    Full text link
    We measure the propagator length in imaginary time quantum mechanics by Monte Carlo simulation on a lattice and extract the Hausdorff dimension dHd_{H}. We find that all local potentials fall into the same universality class giving dH=2d_{H}=2 like the free motion. A velocity dependent action (SdtvαS \propto \int dt \mid \vec{v} \mid^{\alpha}) in the path integral (e.g. electrons moving in solids, or Brueckner's theory of nuclear matter) yields dH=αα1d_{H}=\frac{\alpha }{\alpha - 1} if α>2\alpha > 2 and dH=2d_{H}=2 if α2\alpha \leq 2. We discuss the relevance of fractal pathes in solid state physics and in QFTQFT, in particular for the Wilson loop in QCDQCD.Comment: uuencoded and compressed shell archive file. 8 pages with 7 figure

    Thermal Quantum Fields without Cut-offs in 1+1 Space-time Dimensions

    Full text link
    We construct interacting quantum fields in 1+1 dimensional Minkowski space, representing neutral scalar bosons at positive temperature. Our work is based on prior work by Klein and Landau and Hoegh-KrohnComment: 48 page

    Quantum Sturm-Liouville Equation, Quantum Resolvent, Quantum Integrals, and Quantum KdV : the Fast Decrease Case

    Get PDF
    We construct quantum operators solving the quantum versions of the Sturm-Liouville equation and the resolvent equation, and show the existence of conserved currents. The construction depends on the following input data: the basic quantum field O(k)O(k) and the regularization .Comment: minor correction

    Spectral stochastic processes arising in quantum mechanical models with a non-L2 ground state

    Full text link
    A functional integral representation is given for a large class of quantum mechanical models with a non--L2 ground state. As a prototype the particle in a periodic potential is discussed: a unique ground state is shown to exist as a state on the Weyl algebra, and a functional measure (spectral stochastic process) is constructed on trajectories taking values in the spectrum of the maximal abelian subalgebra of the Weyl algebra isomorphic to the algebra of almost periodic functions. The thermodynamical limit of the finite volume functional integrals for such models is discussed, and the superselection sectors associated to an observable subalgebra of the Weyl algebra are described in terms of boundary conditions and/or topological terms in the finite volume measures.Comment: 15 pages, Plain Te

    The embedding structure and the shift operator of the U(1) lattice current algebra

    Get PDF
    The structure of block-spin embeddings of the U(1) lattice current algebra is described. For an odd number of lattice sites, the inner realizations of the shift automorphism areclassified. We present a particular inner shift operator which admits a factorization involving quantum dilogarithms analogous to the results of Faddeev and Volkov.Comment: 14 pages, Plain TeX; typos and a terminological mishap corrected; version to appear in Lett.Math.Phy

    Projected SO(5) Hamiltonian for Cuprates and Its Applications

    Full text link
    The projected SO(5) (pSO(5)) Hamiltonian incorporates the quantum spin and superconducting fluctuations of underdoped cuprates in terms of four bosons moving on a coarse grained lattice. A simple mean field approximation can explain some key feautures of the experimental phase diagram: (i) The Mott transition between antiferromagnet and superconductor, (ii) The increase of T_c and superfluid stiffness with hole concentration x and (iii) The increase of antiferromagnetic resonance energy as sqrt{x-x_c} in the superconducting phase. We apply this theory to explain the ``two gaps'' problem found in underdoped cuprate Superconductor-Normal- Superconductor junctions. In particular we explain the sharp subgap Andreev peaks of the differential resistance, as signatures of the antiferromagnetic resonance (the magnon mass gap). A critical test of this theory is proposed. The tunneling charge, as measured by shot noise, should change by increments of Delta Q= 2e at the Andreev peaks, rather than by Delta Q=e as in conventional superconductors.Comment: 3 EPS figure
    corecore